
Rule-Based Runtime Verification

Howard Barringer*', Allen Goldberg2, Klaus Havelund2 and Koushik Senfi3

University of Manchester, England
Kestrel Technology, NASA Ames Research Center, USA

University of Illinois, Urbana Champaign, USA

Abstract. We present a rule-based framework for defining and implementing
finite trace monitoring logics, including future and past time temporal logic, ex-
tended regular expressions, real-time logics, interval logics, forms of quantified
temporal logics, and so on. Our logic, EAGLE, is implemented as a Java library
and involves novel techniques for rule definition, manipulation and execution.
Monitoring is done on a state-by-state basis, without storing the execution trace.

1 Introduction
Runtime verification, or runtime monitoring, comprises having a software module, an
observer, monitor the execution of a program, and check its conformity with a require-
ment specification, often written in a temporal logic or as a state machine. Runtime
verification can be applied to evaluate automatically test runs, either on-line or off-line,
analyzing stored execution traces; or it can be used on-line during operation, potentially
steering the application back to a safety region if a property is violated. It: is highly scal-
able. Several runtime verification systems have been developed, of which some were
presented at three recent international workshops on runtime verification [l].

Linear temporal logic (LTL) [16] has been core to several of these attempts. The
commercial tool Temporal Rover (TR) [4,5] supports a fixed future and past time LTL,
with the possibility of specifying real-time and data constraints (time-series) as mno-
tations on the temporal operators. Its implementation is based on alternating automata.
Algorithms using alternating automata to monitor LTL properties are also proposed in
[7], and a specialized LTL collecting statistics along the execution trace is described
in [6]. The MAC logic [15] is a form of past-time LTL with operators inspired by in-
terval logics and which models real-time via explicit clock variables. A logic based on
extended regular expressions [17] has also been proposed and is argued to be more suc-
cinct for certain properties. The logic described in [13] is a sophisticated interval logic.
argued to be more user-friendly than plain L E . Our own previous work includes the de-
velopment of several algorithms, such as generating dynamic programming algorithms
for past time logic [1 I], using a rewriting system for monitoring future-time logic [lo],
or generating Buchi automata inspired algorithms adapted to finite trace LTL [9].

This large variety of logics prompted us to search for a small and general framework
for defining monitoring logics, which would be powerful enough to capture essentially

- ' '

-

*This author is most grateful to RIACS/USRA and to the UK's EPSRC under grant
GR/S40435/01 for the partial support provided to conduct this research.

* This author is grateful for the support received from FUACS to undertake this research while
participating ir. the Summer Student Research Program at the NASA Ames Research Center.

all of the above described logics, hence supporting future and past time logics, interval
logics, extended regular expressions, state machines, real-time and data constraints, and
statistics. The framework should support the definition of new logics in an easy man-
ner and should support the monitoring of programs with their complex program states.
The result of our search is the logic EAGLE presented in this paper. The EAGLE logic
and its implementation for run-time monitoring has in particular been significantly in-
fluenced by earlier work of Baninger et al., see for example [3], on the executable
temporal logic METATEM. A linear-time temporal formula can be separated [8] into a
boolean combination of pure past, present and pure future time formulas - in particular,
the combination can be written as a collection of “directly executable” global condi-
tional rules of the form “if pure past-time then present-time and pure future-time”. The
present-time, or state, formulas determine how the state for the current moment in time
is built and the pure future-time formulas yield obligations that need to be fulfilled at
some time later. The separation result, rules and future obligations are central in our
current work. However, the fundamental difference between METATEM and EAGLE is
that the METATEM interpreter builds traces state by state, whereas EAGLE is used for
checking given finite traces: costly implementation features, such as backtracking and
loop-checking, are not required.

We recentIy discovered pardel work [141 using recursive equations to implement
a real-time logic. However we had already developed the ideas further. We provide the
language of recursive equations to the user, we support a mixture of future time and
past time operators, we treat real-time as a special case of data values, and hence we
allow a very general logic for reasoning about data, including the possibility of relating
data values across the execution trace, both forwards and backwards.

The paper is structured as follows. Section 2 introduces our logic framework, then
in section 3 we discuss the algorithm and calculus that underlies our implementation,
which is then briefly described along with initial experimentation in section 4.

. . .
2 TheLogic

In this section we introduce our temporal finite trace monitoring logic EAGLE. The
logic offers a succinct but powerful set of primitives, essentidly supporting recursive
parameterized equations, with a minimal/maximal fix-point semantics together with
three temporal operators: next-time, previous-time, and concatenation. The next-time
and previous-time operators can be used for defining future time respectively past time
temporal logics on top of EAGLE. The concatenation operator can be used to define
interval logics and an extended regular expression language. Rules are parameterized
to allow for reasoning about data values, including real-time. Atomic propositions are
bcolear, expressions over a program state, Java states in the current implementation.
The logic is first introduced informally through two examples whereafter its syntax and
semantics is given. Finally, its relationship to some other important logics is outlined.

2.1 EAGLE by Example

Fundamental Concepts Assume we want to state a property about a program P , which
contains the declaration of two integer variables x and y. We want to state that whenever
x is positive then eventually y becomes positive. The propcrty can be written as fol!ows

2

in classical future time LTL: Cl(x > 0 -+ Oy > 0). The formulas OF (always F) and OF
(eventually F) , for some property F , usually satisfy the following equivalences, where
the temporal operator OF stands for nexf F (meaning ‘in next state F’):

One can show that OF is a solution to the recursive equation X = F A O X ; in fact
it is the maximal solution. A fundamental idea in our logic is to support this kind of
recursive definition, and to enable users define their own temporal combinators using
equations similar to those above. In the current framework one can write the following
definitions for the two combinators Always and Eventually, and the formula to be
monitored (M I) :

max Always(Form F) = F A OAlways(F)
min Eventually(Form F) = F VOEventually(F)
mon M I = Always(x > 0 -+ Eventually(y > 0))

The Always operator is defined as a maximal fix-point operator; the Eventually oper-
ator is defined as a minimal fix-point operator. Maximal rules define safety properties
(nothing bad ever happens), while minimal rules define liveness properties (something
good eventually happens). For us, the difference only becomes important when eval-
uating formulas at the boundaries of a trace. To understand how this works it suffices
to say here that monitored rules evolve as new states are appearing. Assume that the
end of the trace has been reached (we are beyond the last state) and a monitored for-
mula F has evolved to F’. Then alI applications in F’ of maximal fix-point rules will
evaluate to true, since they represent safety properties that apparently have been satis-
fied throughout the trace, while applications of minimal fix-point rules will evaluate to
false, indicating that some event did not happen. Assume for example that we evaluate
the formula M I in a state where x > 0 and y 5 0, then as a liveness obligation for the
future we will haiie the expression: --

OEventually(y > 0) AOAlways(x > 0 -+ Eventually(y > 0))

Assume that we at this point detect the end of the trace; that is: we are beyond the last
state. The outstanding liveness obligation Eventually(y > 0) has not yet been fulfilled,
which is an error. This is captured by the evaluation of the minimal fix-point combinator
Eventually to false at this point. The remaining other obligation from the A-formula,
nmeQ, A ~ W ~ Y S ‘ ~ * > 0 -+ 3vrentual?y(y > e)), is a safety p p e i t j aiid evaluates ta
true.

For completeness we provide remaining definitions of the future time LTL operators
‘51 (until) and 9%’ (unless) below. Note hcw Y? is defined in teAms of other operators.
However, it could have been defined recursively.

min Until(Form F1,Form F2) = fi V (fi AOUntil(Fi,F2))
max Unless(Form F1,Fot-m fi) = Until(&,fi) VAlways(F1)

Data Parameters We have seen how rules can be parameterized with formulas. Let’s
complicate the example with data parameters. Suppose we want to state the property:

3

“whenever at some point k = x > 0 for some k, then eventually y == k” . This can
be stated as follows in quantified LTL: U(x > 0 .+ 3k.(k = xA Oy = k)) . We use pa-
rameterized rules to state this property, capturing the value of x when x > 0 as a rule
parameter.

mhR(int k) = Eventually(s.y == k) mon MZ = Always(s.x > 0 -+ R(s .x))

Rule R is parameterized with an integer k, and is instantiated in A42 when x > 0, hence
capturing the value of x at that moment. Rule R replaces the existential quantifier. The
logic also provides a previous-time operator, which allows us to define past time op-
erators; the data parametrization works unifonnly for rules over past as well as future,
which is non-trivial to achieve since the implementation does not store the trace, see
Section 4. Data parametrization is also used to elegantly model real-time logics.

2.2 Syntax and Semantics

Syntax A specification S consists of a declaration part D and an observer part 0. D
consists of zero or more rule definitions R, and 0 consists of zero or more monitor
definitions M , which specify what to be monitored. Rules and monitors are named (N).

S ::= dec D obs 0
D ::=R*
0 ::=M*
R ::= {max Imin}N(T~xl, ..., T n x n) = F
M : : = N = F
T ::= Form 1 java primitive type
F ::= juva eyression I True I False I + I Fi AFz I Fi VF2 I Fi + F2 I

O F 1 FIF l .F2 IN(Fl,.. . ,Fn)

A rule definition R is preceded by a keyword indicating whether the interpietation is
maximal or minimal (which we recall determines the value of a rule application at
the boundaries of the trace). Parameters are typed, and can either be a formula of
type Form, or of a primitive Java type, such as int, long, float, etc.. The body of a
rule/monitor is a formula of the syntactic category Form (with meta-variables F , etc.).
The propositions of this logic are Java expressions over an observer state. These can
be arbitrary Java expressions using all of Java’s expression language constructs, rec-
ommended not to have no side effects. Formulas are composed using standard propo-
sitional Jogic operators together with a next-state operator (O F) , a previous-state op-
erator (“ F) , and a concatenation-operator (F1 . F2). Finally, rules can be applied and
their parameters must be type correct; formula arguments can be any formula, with the
exception that if an argument is a java expression, it must be of boolean type.

Semantics The semantics of the logic is defined in terms of a satisfaction relation
C Trace x Form between execution traces and specifications. An execution trace G

is a finite sequence of program states 0 = ~ 1 ~ 2 . . . s,, where 101 = n is the length of the
trace. The i’th state s, of a trace CJ is denoted by o(i). The term denotes the sub-
trace of (T from position i to position j , both positions ificluded. In the implementation a

4

state is a user defined Java object that is updated through a user provided update method
for each new event generated by the program. Given a trace o and a specification dec D
obs 0, satisfaction is defined as follows:

o k d e c D o b s 0 iff V (N = F) E O . o , l k D F

That is, a trace satisfies a specification if the trace, observed from position 1 (the first
state), satisfies each monitored formula. The definition of the satisfaction relation +D

5 (Truce x nat) x Form, for a set of rule definitions D, is presented below, where
0 5 i 5 n + 1 for some trace o = sls2.. . s,. Note that the position of a trace can become
0 (before the first state) when going backwards, and can become n + 1 (after the last
state) when going forwards, both cases causing rule applications to evaluate to either
true if maximal or false if minimal, without considering the body of the rules at that
point.

0, i I=Dj..P
o,i FD True
o,i FD False
o,i FL) 7 F
0, i /=D FI AF2
0,i k=D Fl v F 2
6, i FD F1 + F2
o,i i=D 9 F
0,i /=D F iff l s i a n d o , i - l / = D F
0,i FD FI .F2

iff 1 5 i 5 101 and evuZuute(jexp) (o(i)) == true

iff o,i P D F
iff o,i /=D F1 and 6, i k~ F2
iff o,i +D F1 or o, i k~ F2
iff o,i k~ F1 implies o, i FD F2

iff is 101 ando, i+ l ~ D F

iff 3 j 2 i s.t. o['>i-'I, i k~ F1 and 0[j ' l~l1, 1 /=D F2

o , i F ~ F [x l H F ~ , ..., x ,HF,]
if 1 _<is 101 then:

(3, i k~ N(F1,. . . , F,) iff where (N (z X I , . . . , Xn) = F) E D
otherwise, if i = 0 or i = lo[+ I then:

rule N is defined as max in D

A Java expression (a proposition) is evaluated in the current state in case the position i is
within the trace (1 5 i 5 n). In the boundary cases (i = 0 and i = n+ 1) Java expressions
evaluate to false. Propositional operators have their standard semantics in all positions.
A next-time formula O F evaluates to true if the current position is not beyond the
last state and F holds in the next position. Dually for the previous-time formula. This
mems t!at these formu!as ~ l w ~ y s evaluate to false ir? the boundary positions (0 and
n + 1). The concatenation formula F l . F2 is m e if the trace o can be split into two sub-
traces CJ = 0102, such that F1 is true on 01, observed from the current position i, and
F2 is tme on 02 (ignoring ol, and thereby limiting the scope of past time operators).
Applying a rule within the trace (positions 1.. . n) consists of replacing the call with the
right-hand side of the definition, substituting arguments for formal parameters. At the
boundaries (0 and n + 1) a rule application evaluates to true if and only if it is maximal.

2.3 Relationship to Other Logics
The logical system defined above is expressively rich; indeed, any linear-time tempo-
ral logic, whose temporal modalities can be recursively defined over the next, past or

5

.

I

concatenation modalities, can be embedded within it. Furthermore, since in effect we
have a limited form of quantification over possibly infinite data sets, and concatenation,
we are strictly more expressive than, say, a linear temporal fixed point logic (over next
and previous). A formal characterization of the logic is beyond the scope of this paper,
however, we demonstrate the logic’s utility and expressiveness through examples.

Past Time LTL: A past time linear temporal logic, Le. one whose temporal modali-
ties only look to the past, could be defined in the minor way to the fuyre time logic
exemplified in the introduction by using the built-in previous modality, , in place of
the future next time modality, 0. Here, however, we present the definitions in a more
hierarchic (and logical) fashion. Note that the Zince rule defines the past-time corre-
spondent to the future time unless, or weak until, modality, i.e. it is a weak version of
Since.

min Since(Form F1,Form E) = F2 V(F1 A‘ Since(F1,Fz))

max AlwaysInPast(F0rm F) = lEventuallyInPast(7F)
max Zince(Form F1,Form F2) = Since(F1,Fz) VAlwaysInPast(F1)

Ilia Ev~ntua:lyInPast(F=r=:~a~lyInPast(~~~~ F) = S i m (n n e ,F>

Combined Future and Past Time LTL: By combining the definitions for the future
and past time LTLs defined above, we obtain a temporal logic over the future, present
and past, in which one can freely intermix the future and past time modalities (to any
depth). We are thus able to express constraints such as if ever the variable x exceeds 0,
there was an earlier moment when the variable y was 4 and then remains with that value
until it gets increased sometime later, possibly after the moment when x exceeds 0.

monM2 = Always(x > 0 ---f EventuallyInPast(y == 4AUntil(y == 4,y > 4)))

Extended LTL and pTL: The ability to define temporal modalities recursively pro-
vides the ability to define Wolper’s ETL or the semantically equivalent fixpoint temporal
calculus. Such expressiveness is required to capture regular properties such as temporal
fomula F is required to be true on every even moment of time:

max Even(Form F) = F A 0 0 Even(F)

The pTL formula vx.p A 0 0xApy.q A OxV IJ y, where p and q are atomic formulas,
would be denoted by the formula, X () , where rules X and Y are:

J
maxX() =pAOOX()AY() minY() = q A O X () V Y()

Extended Regular Expressions: The language of Extended Regular Expressions (ERE),
i.e. adding complementation to regular expressions, has been proposed as a powerful
formalism for run-time monitoring. ERE can straightforwardly be embedded within
our rule-based system. Given, E ::= 0lelaJE .EIE + EJE nEJ+JE*, let T r (E) de-
note the ERE E’s corresponding EAGLE formula. For convenience, we define the rule
max Empty() = -, 0 True which is true only when evaluated on an empty (suffix)
sequence. Tr is inductively defined as follows.

6

WQ) = Fake W E) = Empty()
* (a) = aAOEmpty() Tr(E1 .E2) = T ~ (E I) - T ~ (E ~)
Tr(E1 +E2) = Tr(EiIVlk(E2)
%(YE) = 7 T r (E)
%(E*)

Tr(E1 nE2) = ~ (E I) An(E2)

= X() where maxX().= Empty() I (Tr(E) .X())

Real Time as a Special Case of Data Binding: Metric temporal logics, in which
temporal modalities are parameterized by some underlying real-time clock(s), can be
straightforwardly embedded into our system through rule parameterization. For exam-
ple, consider the metric temporal modality, o['lJZ1 in a system with just one global clock.
An absolute interpretation of o['lJ2]1$ has the formula true if and only if Cp holds at some
time in the future when the real-time clock has value within the interval [rl,t2]. For our
context, we assume that the finite sequence of states being monitored contains a variable
clock giving the real-time value of the clock for the associated state. The rule

min EventAbs(Form F,long f 1 ,long r2) =
clock <= r2 A (F + 11 <= clock) A ('F --t OEventAbs(F,tl , r 2))

defines the operator o['IJ21 for absolute values of the clock. A relativized version of the
modality can then be defined as:

min EventRel(Form F,long t1,long t 2) = EventAbs(~,clock+t~,cZock+f~))

Counting and Statistical Calculations: In a monitoring context, one may wish to
gather statistics on the truth of some property, for example whether a particular state
property (9 holds with at least some probability p over a given sequence, i.e. it doesn't
fail with probability greater than (1 - p) . Consider the operator Up$ defined by:

IS1 0,i @p$ iff3S C {i..la[> s.t. --- p Ab' j ES . 0, j I$
1oI-i-

An encoding within our logic can then be given as:

min A(F0rm $, float p , int f, int r) =

(OEmPtYo A (($A (1 - ;) >= P) v (-4 A (1 - q9 >= P))) v
(TEmPtYo A (($ + OA($,P, f , t+ 1>>A (-$ + OA($,P, f+ 1, t f 1))))

min AtLeast(Form $,float p) = A($,p, 0, l)

Towards Context Free: Above we showed th2t EAGLE could encode iogics such as
ETL, which extend LTL with regular grammars (when restricted to finite traces), or
even extended regular expressions. In fact, we can go beyond regularity into the world
of context-free languages, necessary, for example, to express properties such as every
login is matched by a logout and at no point are there more logouts than logins. Indeed,
such a property can be expressed in several ways in EAGLE. Assume we are monitoring
a sequence of b g i n and Logout events. We can define a rule Match(F0rm F1, Form F2)
and monitor with Match(login, logout) where:

minMatch(F0rm F1,Form F2) = F1 .Match(F~,F2).F2.Match(F~,F2) V Empty()

7

Less elegantly, and which we leave as an exercise, one could use the rule parametriza-
tion mechanism to count the numbers of logins and logouts.

3 Algorithm

In this section, we now outline the computation mechanism used to determine whether
a given monitoring formula holds €or some given input sequence of events. On the
observer side a local state is maintained. The atomic propositions are specified with
respect to the variables in this local state. At every event the observer modifies the local
state of the observer based on that event and then evaluates the monitored formulas on
that state and generates a new set of monitored formulas. At the end of the trace the
value of the monitored formulas are determined. The evaluation of a formula F on a
state s = ~ (i) in a trace CT results in an another formula evaZ(F, s) with the property that
cs, i eval(F, s). The definition of the operator eval : Form x
State --f Form uses another auxiliary operator update : Form x State -+ Form. The
intuition behind using the operator update is to update a formula properly in presence of
previous operators. The value of a formula F at the end of a trace is given by value(F).
The operator value : Form -+ {True,False} returns True if the formula is satisfied by
an empty trace and returns False otherwise. The definition of the operators eval, update
and value forms the calculus of the recursive rule-based framework. We define this
calculus next.

3.1 Calculus
The evaZ, update ajd value operators are defined a priori for all operators except for the
previous operator and rule application. The definitions of eval, update and value for
the rule application get generated based on the definition of rules in the specification.
We do not define the functions on the previous operator, since this operator is eliminated
in the translations we perform before we apply the rules. The definition of eval, . . update
and value on the different operators is given below.

F if and only if cs, i f 1

evaZ(jexp, s) = value of jexp in s
eval(F: op F2,s) = evaZ(fi,s) op evaZ(F2,s) where op E {A,V,--+}

eval(lF, s) = -evaZ(F, s)
evaZ(OF,s) = update(F,s)

update Gexp, s) = jexp
update(fi op fi,s) = update(F:,s) op update(F2;s) where op E {A,V,-+}

update(lF,s) = lupdate(F,s)
updafe(OF,s) = Oupdate(F,s)

valueQexp, s) = False
vulue(F1 op F2,s) = vulue(F1,s) op value(F2,s) where op E {A,V,-+}

value(lF,s) = waZue(F,s)
value(OF,s) = False

Note that eval of a formula of the form O F on a state s reduces to the update of F on
state s. This ensures that if F contains any past time operators then update of F updates

8

them properly. Moreover, value(0F) is False as the operator 0 is assumed to have
strong interpretation in the logic. The value of a max rule is True and that of a min rule
is False.

value(R(F1, ..., F,),s) = True ifRismax
vaZue(R(F1, ... ,F,),s) = False if R is min

However, the definition of the eval and update operators for the rules are not generic for
all rules. They are synthesized according to the definition of the rules in the specifica-
tion. We call this algorithm the monitor synthesis algorithm. We describe the algorithm
informally through examples. Consider the following rule.

max Always(Form F) = F A OAlways(F)

For this rule evaZ and update are defined as follows.

eval(Always(F),s) = eval(F A OAlways(F),s)
update(Always(F),s) = update(F A OAlways(F),s)

However, the definition of update results in infinite recursion. To break the recursion we
note that the rule Always does not contain any previous operator, although the argument
F may contain some. So we simply propagate the update to the argument F . Thus the
new definition of update becomes:

update(Always(F),s) = Always(update(F,s))

If the rule contains a formula F guarded by a previous operator on its right hand side
then we evaluate F at every event and use the result of this evaluation in the next state.
Thus, the result of evaluating F is required to be stored in some temporary placeholder
so that it can be used in the next state. To allocate a placeholder, we introduce, for
every formula guarded by a previous operator, an argument in the rule and use these
arguments in the definition of eval and update for this rule. Let us illustrate this with
the following example.

J
maxR(Form Fl1FormF2) =F1 A (F2VR(Fl,F2))

For this rule we introduce a n p auxiliary rule R’ which contains an extra argument
corresponding to the formula

R(Form F1,Form F2) = R’(Fl,F2,value(F2VR(Fl,F2)))
evaZ(R’(F1 Fz,pust,), s) = evaZ(F1 A past, s)
update (R’(F1, F2, past,), s) = R’ (update(F1, s) , update(F2,s) , evaZ(F2 V R‘ (I5 , F2 ,past) , s))

Here, in eval, the subformula (5 V R(Fl;F2)) guarded by the previous operator is
replaced by the argument past, that contains the evaluation of the subformula in the
previous state. In update we not only update the arguments F1 and fi but alsokvaluate
the subformula F2 V R/(Fl,F2Jpastl) and pass it as third argument of R’. Thus in the
next state pastl is bound to (F2 VR’(F1,fi,pastl)). The translation, however, does
not work correctly in case of update for a rule whose right hand side contains other
rules. For example let us consider the rule:

(F2 VR(Fl ,F2)) .

J

This rule contains the rule R on its right hand side. Now if we simply define the update
operator for this rule as follows

updute(R2 (F) , s) = RZ (updure(F, s))

then this definition is not entirely correct as it does not update the rule R(F,F) that
contains past time operators. The ideal definition of update should be:

updure(R2(F), s) = updute(R(F, F) V O R 2 (F) , s)

But, as before, this definition results in infinite recursion. This is resolved by introducing
additional arguments as in the case of previous operators. For every rule that appears
on the right hand side we introduce an argument and bind the rule to that argument. For
example for R2 we define the eval and update as follows.

R2(F> = %(F,R(F,F))
evaZ(R;(F,innerl),s) = evaZ(innei-1 VoG(F, innerl),s)
update(% (F, innerl), s) = Ri(update(F, s) , updute(inner1, s))

In case the type of arguments passed to a rule are different from Form the definition of
the operator eval changes for that rule. Before doing the eval on the right hand side of
the rule we first evaluate, may be partially, the arguments whose types are not Form.
Let us consider the following example.

max R3(in t k) = (s.x == k) V oR3(s.y + k)

The eval and update for the above rule are defined as follows.

Here, the result of evuZ(argl,s), where argl is a java expression, may be a partially
evaluated java expression if java expressions referred by some of the variables in arg,
are partially evaluated. The java expression gets fully evaluated once the Java expres-
sions referred by all the variables are fully evaluated. Thus, we translate the rules in
the specification to a set of definition of eval and updafe operators. Once we have this
translation we can easily execute, or in other words, evaluate all the monitors at each
state in a trace of a running program.

4 Implementation and Experiments

We have implemented this monitoring framework in Java. Currently it does not allow
mutually recursive rules, however, this will be supported for the case where all the
rules in the specification are purely future time. The implemented system works in two
phases. First, it compiles the specification file to generate a set of Java classes; a class
is generated for each rule. Second, the Java class files are compiled into Java bytecode
and then the monitoring engine runs on a trace; the engine dynamically loads the Java
classes for rules at monitoring time.

10

f

r

Our implementation of propositional logic uses the decision procedure of Hsiang
[121. The procedure reduces a tautological formula to the constant true, a false formula
to the constant false, and all other formulas to canonical forms which are exclusive or
(e) of conjunctions. The procedure is given below using equations that are shown to be
Church-Rosser and terminating modulo associativity and commutativity.

true A $ = $
$ A $ = $ false @ $ = $
e= false -$= true @ $

$1 -+$2 =true@$i @($I Ab)

false A $ = false

$ 1 / \ ($ 2 @ $ 3) = (~ 1 A $ 2) @ ($ 1 A03) $1 V$2 = ($1 A$2)@$L e302
$1 E $2 = true @ $1 @ $2

The above ensures that the size of a formula is small. In the translational phase, a Java
class is generated for each rule in the specification. The Java class contains a construc-
tor, a value method, an eval method, and a update method corresponding to the value,
eval and update operators in the calculus. The arguments are made fields in the class
axi they are initialized sh,raogh ~ ! e coritmctor. The c h ~ i c e af generating Java c!asses
for each rule is for getting an efficient implementation. To handle partial evaluation we
wrap every java expression in a Java class. Each of those classes contains a method
isAvailable (1 that returns true whenever the java expression representing that class
is fully evaluated and returns f a l se otherwise. The class also stores, as fields, the dif-
ferent other java expression objects corresponding to the different variables (formula
variables and state variables) that it uses in its java expression. Once all those java ex-
pressions are fully evaluated, the object for the java expression evaluates itself and any
subsequent call of isAvailable (1 on this object returns true.

Once all the Java classes have been generated, the engine compiles all the generated
Java classes, creates a list of monitors (which are also formulas) and starts monitoring
all of them. During monitoring the engine takes the states from the trace, one by one,
and evaluates the list of monitors on each to generate another list of formulas that be-
come the new nionitors for tile iiext state. If at ariy point a monitor (a fonnula) becomes
false an error message is generated and that monitor is removed from the list. At the
end of a trace the value of each monitor is calculated and if false, a warning message
for the particular monitor is generated. The details of the implementation are beyond
the scope of the paper. However, interested readers can get the tool from the authors.

EAGLE has been applied to test a planetary rover controller in a collaborative effort
with other colleagues, see [2] for an earlier similar experiment using a simpler logic.
The rover controller, written in 35,000 lines of C++. executes action plans. The testing
environment, consists of a test-case generator, automatically generating input plans for
the controller. Additionally, for each input plan a set of temporal formulas is generated
that the plan execution should satisfy. The controller is executed on the generated plans
and the implementation of EAGLE is used to monitor that execution traces satisfy the
formulas. An unknown error was detected in the first run, demonstrating that a certain
task did not recognize the too early termination of some other task.

5 Conclusion and Future Work
We have presented the succinct and powerful logic EAGLE, based on recursive param-
eterized nile definitions over three priEitive temporal operators. We have indicated its

-

11

power by expressing some other sophisticated logics in it. Initial experiments have been
successful. Future work includes: optimizing the current implementation; supporting
user-defined surface syntax; associating actions with formulas; and incorporating auto-
mated program instrumentation.

References
1. Ist, 2nd and 3rd CAV Worlcrhops on Runtime Verification (RV’OI - RV’03), volume 55(2),

70(4), 89(2) of ENTCS. Elsevier Science: 2001,2002,2003.
2. C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, G. Rogu, and

W. Visser. Experiments with Test Case Generation and Runtime Analysis. In E. Borger,
A. Gargantini, and E. Riccobene, editors, Abstracr State Machines (ASM’03), LNCS, pages
87:107. Springer, March 2003.

3. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: An introduction.
Formal Aspects of Computing, 7(5):533-549, 1995.

4. D. Drusinsky. The Temporal Rover and the ATG Rover. In K. Havelund, J. Penix, and
W. Visser, editors, SPIN Model Checking and Software Verijcarion, voiume is85 of LNCS,
pages 323-330. Springer, 2000.

5. D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. In CAV’O3, volume
2725 of LNCS, pages 114-1 18. Springer-Verlag, 2003.

6. B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting Statistics over Runtime Exe-
cutions. In Proceedings of Runtime Verification (RV’02) [l], pages 36-55.

7. B. Finkbeiner and H. Sipma. Checking Finite Traces using Alternating Automata. In Pro-
ceedings of Runtime Verification (RV’OI) [l], pages 44-60.

8. D. Gabbay. The Declarative Past and Imperative Future: Executable Temporal Logic for In-
teractive Systems. In Proceedings of the 1st Conference on Temporal Logic in Specification,
Altrincham, April 1987, volume 398 of LNCS, pages 409448,1989.

9. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Properties
on Running Programs. In Proceedings, International Conference on Automated Software
Engineering (ASE’OI), pages 412416. ENTCS, 2001. Coronado Island, California.

10. K. Havelund and G. Rogu. Monitoring Programs using Rewriting. In Proceedings, Interna-
tional Conference on Automated Sofnyare Engineering (ASE’OI), pages 135-143. Institute
of Electrical and Electronics Engineers, 2001. Coronado Island, California.

11. K. Havelund and G. Rogu. Synthesizing Monitors for Safety Properties. In Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS’O2), volume 2280 of Lecture Notes
in Computer Science, pages 342-356. Springer, 2002.

12. Jieh Hsiang. Refutational Theorem Proving using Term Rewriting Systems. Artificial Zntel-
ligence, 25:255-300, 1985.

13. D. Kortenkamp, T. Milam, R. Simmons, and J. Femandez. Collecting and Analyzing Data
from Distributed Control Programs. In Proceedings of RV’OI [l], pages 133-151.

14. K. Jelling fistoffersen, C. Pedersen, and H. R. Andersen. Runtime Verification of ‘Timed
LTL using Disjunctive Normalized Equation Systems. In Proceedings of Runtime Verifica-
tion (RV’03) [l], pages 146-161.

15.J. Lee, S. Kannan, M. Kim, 0. Sokolsky, and M. Viswanathan. Runtime Assurance Based
on Formal Specifications. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, 1999.

16. A. Pnueli. The Temporal Logic of Programs, In Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pages 46-77, 1977.

17. K. Sen and G. Rogu. Generating Optimal Monitors for Extended Regular Expressions. In
Proceedings of the 3rd Workshop on Runtime Verification (RV’03) [I], pages 162-181.

12

